ارزیابی روش های پیش بینی ترکیبی : با رویکرد شبکه های عصبی - کلاسیک در حوزه اقتصاد

نویسندگان

دکتر علی رجب زاده

دکتر عادل آذر

چکیده

در إین مقاله با استفاده از اطلأعات سری زمانی قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینی قیمت سهام و نیر ارائه مدل بهینه پرداخته می شود. روشهای پیش بینی مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: ر و شهای پیش بینی براساس مدلهای خطی (کوتاه مدت و بلندمدت)، روشهای پیش بینی براساس مدلهای غیرخطی (شبکه های عصبی غیرخطی) و مدل شبکه عصبی با ساختار پیشنهادی. در هر مورد نتایج به دست آمده رسم شده اند. با استفاده از پیش پردازش های اشاره شده، نشان داده می شودکه قیمت و بازده سهام (در هر 6 سهم مربوط به صنابع مختلف) از نگاشهای پیچیده غیر خطی و آشوبگرانه به وجود آمده اند و اساسآ استفاده از انواع مختلف روشهای خطی صحیح نمی باشد. همچنین نشان داده می شودکه استفاده از روشهای غیرخطی شبکه های عصبی به خودی خود و به شکل متعارف بهبود قابل ملاحظه ای را به دنبال ندارد. با ارائه پیشنهاد ساختار جدید، می توان قیمت و بازده را به خوبی در دو حالت پیش بینی روز بعد و پیش بینی سی روز بعد تخمین زد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی مصرف کاغذ چاپ و تحریر در ایران با استفاده از روش های کلاسیک و شبکه عصبی مصنوعی

هدف از این تحقیق پیش بینی روند مصرف کاغذ چاپ و تحریر در ایران طی یک دوره زمانی 5 ساله با استفاده از روشهای کلاسیک و نوین پیش بینی است. به منظور انجام این پیش بینی، در ابتدا پیش بینی پذیر بودن سری زمانی با استفاده از آزمون های دوربین- واتسون و گردش مورد بررسی قرار گرفت. سپس به مقایسه مدل شبکه عصبی مصنوعی (پرسپترون چندلایه (MLP)) و مدل های کلاسیک تک متغیره و چندمتغیره از قبیل مدل های تک متغیره هم...

متن کامل

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

پیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی

در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مجله تحقیقات اقتصادی

ناشر: دانشکده اقتصاد- دانشگاه تهران

ISSN 0039-8969

دوره 38

شماره 2 2003

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023